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ADAPTIVE ACTION FOR MULTI-AGENT PERSISTENT COVERAGE

C. Franco, G. López-Nicolás, C. Sagüés and S. Llorente

ABSTRACT

Persistent coverage with a team of agents refers to the task of covering an area
where the coverage degrades with time. This is a dynamic task as opposed
to the deployment problem. A key issue here is the coverage degradation
that prevents the complete coverage fulfilment and requires persistence in the
action. We propose a new method for persistent coverage where the agents’
actions are computed in a partially distributed manner. The contribution is a
control strategy based on variable coverage action and variable coverage range
of the agents. This control provides adaptive behaviour in terms of actuator
power and actuator domain in order to reduce the coverage error and energy
consumption. The proposal is tested in simulation, showing clear improvement
in terms of efficiency, flexibility, and scalability.
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I. INTRODUCTION

The problem of area coverage has been widely
studied during the last decades. This is a challenging
problem with a great variety of approaches depending
on the framework and conditions considered. The task
of coverage has been classically tackled as a static
problem, where a set of agents is deployed to cover an
area. However, if the number of agents is not enough
to cover the area all in one go, a dynamic approach is
required. Moreover, we consider the task of covering
an area where the achieved coverage degrades with
time. Therefore, the coverage degradation prevents the
total coverage fulfilment and requires persistence in
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the action. This dynamic and complex task, referred as
persistent coverage, is still an open issue.

In terms of efficiency, a key issue in the task
of persistent coverage is the consumption of energy.
One way of optimizing this energy consumption is by
reducing the path length travelled [2], [9], [15]. These
previous works address the problem of efficient path
planning for area coverage considering a single agent.
A more challenging problem is considering a multi-
agent setup [1]. Work in [22] also considers changing
environments in the task definition, and proposes the
adaptation of the agents’ speed as a function of the
environment changes. Another approach considered in
[3], [21], and [23] consists of computing the path
depending on the interest of covering each part of the
domain.

These previous approaches basically perform an
initial path computation to cover the whole domain.
This can be efficient in general but rigid and not
appropriate when long-term coverage problems or
changing environments are considered. Additionally,
centralised approaches are well-known to be difficult
to scale. This has been addressed in the multi-robot
patrolling problem with distributed techniques able
to adapt to system changes with variable number of
agents [20]. Other related works [18], [19] consider
simultaneously the design of optimal trajectories and

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls [Version: 2008/07/07 v1.00]

Citation: Carlos Franco, Gonzalo López-Nicolás, Carlos Sagüés, and Sergio Llorente. Adaptive action for multi-
agent persistent coverage. Asian Journal of Control, 18(2):419–432, 2016



2 Asian Journal of Control, Vol. 00, No. 0, pp. 1–14, Month 0000

distributed controllers with several performance criteria
such as refresh time and latency. This issue is also
addressed in [8], [10], [12], or [17]. Additionally, the
idea of a variable density function over the domain
denoting the interest of the points to be covered is
presented in [24] to produce denser paths over the
areas of interest. The issue of collision avoidance
with unknown obstacles and global convergence of
the dynamic coverage task is also addressed with a
decentralised control strategy in [25].

Another way to improve the system efficiency
is to modify the range of the coverage actuators to
save energy. This issue has been widely studied in the
context of wireless communications for the deployment
problem, where sensor or wireless networks adapt their
range to save energy while they are placed strategically
in the workspace optimising their coverage [4], [11],
[16], [27]. However, there are still no approaches
addressing the persistent area coverage problem with
variable range of the actuator.

In this paper, we consider the problem of
persistent coverage and we present a new method
where the agents’ paths and actions are computed
online in a partially distributed manner. Although some
works focus on uncertainty maps with intermittent
communications [29] or constraining the motion to
maintain the communication network [14], we consider
that the coverage information of the domain is available
for all the agents, whereas the coverage and motion
actions are computed locally by each agent resulting
in a partially distributed system. This type of topology
has been previously used for instance in [13], [22],
[24]. An illustrative example of this topology could
be a fleet of ships cleaning up an oil spill spread
into the sea. Locally they compute their motion in a
distributed way while they also receive information
by satellite about the distribution of the oil released
to avoid get stuck in local minima. Moreover, since
there are applications that require a particular coverage
level (e.g. higher coverage leads to a waste of energy
in cleaning tasks, or to bad results in painting tasks),
we also consider adaptive action. The contribution is a
control strategy based on coverage action with variable
power and variable range, which allows not only to
reduce the coverage error but also to save energy. On the
one hand, the coverage action of the agents is variable
and can be adapted depending on the coverage error
in the actuator domain. On the other hand, we extend
[6] and the agents’ controllers can now modify its
coverage range so the actuator domain can be adapted to
reduce the energy consumption and the coverage error.
Regarding the agents’ motion controller, we combine a

Fig. 1. Problem setup for persistent coverage. Several agents Ai are
shown in the area to be covered Dx. The different parameters
and variables are described in the text.

gradient technique for local coverage, and blob analysis
to develop a global strategy [7], [6].

II. COVERAGE CONTROL

In this section, we introduce the problem
formulation and present the coverage control laws to
regulate the power level and coverage range of each
agent’s actuator to perform persistent coverage.

2.1. Problem formulation

The problem formulation is introduced by includ-
ing the dependencies of the variables only when they
are defined for ease of the notation. Let us consider a
team of N agentsA = {A1, . . . ,AN}. We consider that
mobile agents are holonomic, ṗi = ui, where pi(t) =
[pi1(t), pi2(t)]T is the position of the agent Ai in a
domain Dp ⊂ R2 and ui ∈ R2 its input motion. The aim
is to reach a desired coverage level Λ∗(x) > 0 for all
the points x ∈ Dx over a bounded domain Dx ⊂ R2. An
example to illustrate the coverage level meaning could
be a spray painting application where the coverage level
is the thickness of the actual paint layer, and the desired
coverage level is the required value of paint thickness.
Thus, the agents paint the area and either lack or excess
of painting with respect to the desired coverage level
is undesirable. Note that Dp can be different from Dx

being the reason why, depending on the application, the
agents can actuate in an area bigger, or smaller, than the
space they occupy. The problem setup is illustrated in
Fig. 1.

2.2. Coverage power control

In the following we present a power control for
the coverage action of the agents in order to design an
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adaptive and efficient method. Let us define r(x, pi) ∈
R+ ∪ {0} as the Euclidean distance between a point x ∈
Dx and the position pi of agent Ai, and αi(r) ∈ R+ as
the coverage action that the agent develops over points
at distance r inside the coverage domain Ωi(pi, Ri) of
each agent. We consider circular actuators with range
Ri(t) ∈ R+ so that their coverage function αi(r) is:

{
αi ≥ 0 if r < Ri (x ∈ Ωi)
αi = 0 if r ≥ Ri (x 6∈ Ωi)

.

The total coverage action of the team of agents
is defined as α =

∑
i∈{1,...,N} αi. We also define

Λ(t, x) ∈ [0,∞) as the coverage developed by the team
of agents over a point x at time t.

The coverage information evolution in each point
x is modelled with the following differential equation:

∂Λ
∂t

= A · Λ + B · α .

where A,B ∈ R, A < 0 is the state gain and B > 0
the input gain. Note that A < 0 is required for stability
and it is related with the coverage decay. We assign
Λ(t = 0, x) = 0, ∀x ∈ Dx, which means that at the
beginning all points are assumed as uncovered.

At this point, let us introduce Φ(x) ∈ (0, 1], ∀x ∈
Dx, as the priority to cover each point x. Φ is a function
that weights the interest of the points in the domain to
give more or less coverage priority to particular areas.
The quadratic coverage error eDx(t) of the domain is
defined as:

eDx =
∫

Dx

Φ · (Λ∗ − Λ)2dx . (1)

Let us compute the evolution of the error assuming
that we have one agent in order to simplify the analysis:

∂eDx

∂t
= −2

[∫

Dx

A · Φ · Λ · (Λ∗ − Λ)dx

+
∫

Dx

B · αi · Φ · (Λ∗ − Λ)dx

]
.

The first term is the coverage decay that drives Λ
towards 0, i.e. increasing the coverage error in general.
In the second term, αi can be designed to make it always
positive or null in such a way that the error decreases,
or at least increases as less as possible.

Let us define σi(r) as the normalized action of the
agent such that:

∫

Ωi

σidx = 1 . (2)

Notice that, for example, a lawn mower may be
modelled by a constant σi, whereas a spray painter may
be modelled by a decreasing function with radius r. We
now propose to define the action of an agent as:

αi = K · σi , (3)

K = C ·
[∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

]2·q−1

, (4)

where C > 0 is the control gain, q ∈ N, and the
powered term can be interpreted as the weighted error
of the agent’s domain. This is the formulation of a
proportional controller that considers the distribution of
the robots’ action in order to increase the performance.
Note that K ∈ R and that σi = 0, ∀x 6∈ Ωi. In this way
we obtain:

∂eDx

∂t
= −2

[∫

Dx

A · Φ · Λ · (Λ∗ − Λ)dx

+C ·
(∫

Ωi

B · σi · Φ · (Λ∗ − Λ)dx

)2·q]
. (5)

The change of the integration domain from Dx, which
is constant, to Ωi, which is variable, is done taking into
account the results of [5] and [26] for differentiation
of double integrals depending on a parameter and
the assumptions over the coverage function (αi(r) =
0, ∀r ≥ R). Therefore, the second term is never
negative and the agents reduce the error according to
the shape of the coverage action. Now let us discuss
the evolution of the quadratic error inside the coverage
domain of agents.

Let us first define the quadratic coverage error of
the agents domain eΩi(t,Λ) as:

eΩi =
∫

Ωi

Φ · (Λ∗ − Λ)2dx . (6)

Proposition 1 Consider the persistent coverage task
carried out by a team of agents A under the coverage
control law defined in (3) and (4), with Φ(x) =
1, ∀x ∈ Dx. Then, the quadratic error inside the
coverage domain of agents eΩi results in a non-positive
derivative. In particular, simplifying the analysis to a
static case, it can be seen that the error is bounded if
A−1 ·B · C ∫

Ωi
σ2

i dx 6= 1 and it is in inverse relation to
the control gain C.

Proof: Considering q = 1 in (5) without loss of
generality, we can compute:

∂eΩi

∂t
= −2 · Φ ·A

∫

Ωi

Λ · (Λ∗ − Λ)dx

−2 · Φ2 ·B2 · C ·
(∫

Ωi

σi · (Λ∗ − Λ)dx

)2

. (7)
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Second term in (7) is non-positive, which guarantees
that the coverage action does not increase the error.
However, the first term can be positive or negative.
Let us compute Λmax(x) that maximizes (7) and then,
∂eΩi

/∂t(Λmax) ≥ ∂eΩi
/∂t(Λ):

∂2eΩi

∂t∂Λ
(Λmax) = 0 , (8)

∂3eΩi

∂t∂2Λ
(Λmax) < 0 . (9)

We begin by computing (8):

∂2eΩi

∂t∂Λ
= −2 · Φ

[
A

∫

Ωi

(Λ∗ − 2 · Λ)dx

−2 · Φ ·B2 · C
∫

Ωi

σi · (Λ∗ − Λ)dx

]
= 0 .

Reordering and taking derivatives with respect to x:

A · (Λ∗ − 2 · Λ) = 2 · Φ ·B2 · C · σi · (Λ∗ − Λ) ,

and thus:

Λmax =
A · Λ∗ − 2 · Φ ·B2 · C · σi · Λ∗

2 ·A− 2 · Φ ·B2 · C · σi
.

Notice that in this equation both Λmax and σi depends
on x. Note also that Λmax ∈ (Λ∗/2,Λ∗). Next, we
compute (9):

∂3eΩi

∂t∂2Λ
= −4 · Φ ·

(
Φ ·B2 · C −A

∫

Ωi

dx

)
,

which is always negative and guarantees that Λmax

makes the derivative of the error maximum. Negative
sign of (Λ∗ − Λmax) in (7) guarantees that ∂eΩi/∂t <
0, ∀Λ. Since this is a proportional control law,
there is an offset (or steady error) which prevents
∂eΩi/∂t(Λmax) < 0 in the worst case with Λ = Λmax.
Higher control gain C reduces the offset and, in the
limit, when C →∞, Λmax → Λ∗, and substituting
into (7), ∂eΩi/∂t → 0 which results in a non-positive
derivative of the error. Thus, after computing the worst
case, we obtain similar conclusions to the well known
results of proportional controllers dealing with linear
systems.

Now, it would be interesting to find bounds to
the offset of the controller. However, this is a complex
task in the general case with the agents moving, since
the amount of coverage inside the agent’s domain is
varying in an unknown way. Thus, let us assume in
the following analysis that the agent is static (denoted
with superindex s). This assumption is closer to reality

if the motion of the agents is slow and the coverage
level varies smoothly in the space. Otherwise, without
this assumption there is no analytical solution. We can
compute the coverage distribution of the agent domain
Λs(x ∈ Ωi, t) including (3) and (4) in (1) with Φ = 1,
q = 1 and assuming Λ(x, 0) = 0:

∂Λ
∂t

= A · Λ + B · C · σi

∫

Ωi

σi · (Λ∗ − Λ)dx

= A · Λ + B · C · σi ·
(

Λ∗ −
∫

Ωi

σi · Λdx

)
. (10)

The coverage level Λ(t, x) depends on time and space,
and with the previous assumption we will obtain Λs

that can be written as Λs(t, x) = η(t) · σi(x). In order
to solve the previous differential equation we carry out
the change of variable to η:

∂η

∂t
= η

(
A−B · C ·

∫

Ωi

σ2
i dx

)
+ B · C · Λ∗ . (11)

Solving this first order differential equation:

η =
B · C · Λ∗

e
−(A−B·C RΩi

σ2
i dx)

∫ t

0

e
−(A−B·C RΩi

σ2
i dx)

dt .

Finally, computing the integral in time and undoing the
change of variable, we have:

Λs =
B · C · σi · Λ∗ ·

(
e
(A−B·C RΩi

σ2
i dx)t − 1

)

A−B · C ∫
Ωi

σ2
i dx

.

and then, we can compute the error evolution es
Ωi

(Λs, t):

es
Ωi

=
∫

Ωi

Φ · (Λ∗ − Λs)2dx ,

and the derivative over time:
∂es

Ωi

∂t
= 2 ·B · C · Φ · Λ∗2 · e(A−B·C RΩi

σ2
i dx)t

·
(

A− 2 ·B · C · e(A−B·C RΩi
σ2

i dx)
∫

Ωi

σ2
i dx

)
,

which is non-positive. We can also compute the steady
value of the coverage (t →∞) in the static case Λss(x):

Λss =
−A−1 ·B · C · σi · Λ∗

1−A−1 ·B · C ∫
Ωi

σ2
i dx

.

In that case, the steady error in the agent’s domain is:

ess
Ωi

=
∫

Ωi

Φ · (Λ∗ − Λss)2dx

= Λ∗
2
∫

Ωi

Φ ·
(

1− −A−1 ·B · C · σi

1−A−1 ·B · C ∫
Ωi

σ2
i dx

)2

dx,

(12)
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which is the offset of the proportional controller in the
static case. Taking the derivative with respect to C:

∂ess
Ωi

∂C
=

−2 ·A−1 ·B · Φ · Λ∗2(
A−1 ·B · C ∫

Ωi
σ2

i dx− 1
)3 ,

which is non-positive and implies that increasing the
controller gain results in a decreasing of the offset.

The offset also depends on the distribution of σi.
In order to analyse this influence, let us introduce a
coverage function with cylindrical shape σc

i (r):

σc
i =

{
1/(π · r2

m) if 0 ≤ r ≤ rm

0 if rm < r
, (13)

where r ∈ R+ is r = ‖x− pi(t)‖, and rm ∈ [0, R) is
the actuator percentage of the range where the action
is not null, being R ∈ R+ the maximum actuator range.
This function with cylindrical shape presents a constant
coverage in r = [0, rm] and null in r = [rm, R). Low
values of rm produce sharper action whereas values of
rm close to R results in a uniform action throughout
the range. Including coverage function (13) in (12) the
steady error in the agent’s domain becomes:

ess
Ωi

= π · Λ∗2 · Φ ·
(

R2 − r2
m +

π2 · r6
m

(A−1 ·B · C − π · r2
m)2

)
.

Taking the derivative with respect to rm:

∂ess
Ωi

∂rm
= 2 · π · Φ · rm · (Λ∗ ·A−1 ·B · C)2

·
(
3 π r2

m −A−1 ·B · C)

(A−1 ·B · C − π r2
m)3

,

which is always negative and therefore, the steady state
static error (12) with respect to the maximum error
decreases as the action shape becomes more uniform
throughout the range.

Summing up, we have proposed a proportional
controller whose error is bounded if A−1 ·B ·
C

∫
Ωi

σ2
i dx 6= 1 (which is easy to achieve by tuning C)

and whose offset decreases by increasing the gain of the
controller C. The offset also depends on the distribution
of the covering function. With plane coverage actions
offset is near to 0 and with sharp actions it grows. This
effect can be modified with the motion controller since
agents adapt their positions to the error distribution of
the domain. ¥

2.3. Coverage range control

In this section, we propose a novel controller for
the agents’ coverage range to increase the performance
of the coverage and to reduce the power consumption.
It is based on an adaptive coverage action range R as
well as the adaptive coverage power level introduced
in the previous section. Let us first obtain the second
derivative of the error over time:

∂2eDx

∂t2
= −2

[∫

Dx

A · Φ · ∂Λ
∂t

· (Λ∗ − 2 · Λ)dx

+2 · q · C ·
(∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

)2·q−1

·
∫

Ωi

B · Φ ·
(

∂σi

∂R
· ∂R

∂t
· (Λ∗ − Λ)− σi · ∂Λ

∂t

)
dx

]
,

(14)

where the partial derivative of the range with respect
to time can be tuned to make the corresponding term
always positive. Then, we design the range control by
imposing the coverage range evolution as:

∂R

∂t
= kR

i

∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

·
∫

Ωi

B · Φ · ∂σi

∂R
· (Λ∗ − Λ)dx, (15)

with kR
i ∈ R+ the range controller gain. We analyse the

effect of the range control by replacing (15) into (14):

∂2eDx

∂t2
= −2

[∫

Dx

A · Φ · ∂Λ
∂t

· (Λ∗ − 2 · Λ)dx

−2 · q · C ·
(∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

)2·q−1

·
∫

Ωi

B · Φ · σi · ∂Λ
∂t

dx

]

−4 · kR
i · q · C ·

(∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

)2·q

·
(∫

Ωi

B · Φ · ∂σi

∂R
· (Λ∗ − Λ)dx

)2

.

It can be seen that the second term of the addend
is always negative and the first one depends on the
conditions of the problem. Thus, the aim of the range
controller is to make the second derivative of the error
as low as possible to reduce the coverage error.
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III. MOTION STRATEGY

In this section, we present the motion control
law for coverage that relies in a local gradient-
based approach with a global strategy extending ideas
previously presented [6], [7], [8].

3.1. Motion control

The objective of our motion control law is to
keep the coverage error decreasing. Thus, we want to
minimize the variation of each agent’s error computed
in (5) with respect to its own position. Then, we
compute uL

i (t) as the gradient of the variation of the
error (right-hand side of (5)) with respect to the position
of agent i:

uL
i =− 4 · q · C ·

(∫

Ωi

B · σi · Φ · (Λ∗ − Λ)dx

)2·q−1

·
∫

Ωi

B · Φ · ∂σi

∂r
· pi − x

‖pi − x‖ · (Λ
∗ − Λ)dx .

From this gradient we can extract the direction of the
motion, ûL

i (t), to get the maximum benefit covering the
neighbourhood of the agent:

ûL
i =

{
uL

i / ‖uL
i ‖ if ‖uL

i ‖ 6= 0
0 otherwise

,

However, when the error in the coverage domain is low,
the benefit of covering the neighbourhood of the agent is
small. Moreover, gradient techniques are known to get
stuck in local minima. Thus, we propose to combine the
gradient strategy with a global law uG

i (t) that depends
on the coverage level of the whole domain to bring the
agents to areas with higher error.

In order to drive the agents to other areas with
higher error we propose a strategy to select global
objectives po

i (t) ∈ Dp, which is developed in Section
3.2, and a control law to reach them. Let us define
do

i (t) as the Euclidean distance between the agent and
objective positions, and a global gain kG

i (do
i ) ∈ [0, 1] as:

kG
i = tanh

(
2 · do

i

R

)
, (16)

where R is the range of the coverage action. This
function is close to 1 until the distance to the objective
is in the range of the coverage actuator and then it
decreases to 0 when the agent is on the objective.
Finally, the global control law is defined as:

uG
i = kG

i ·
pi − po

i

‖pi − po
i ‖

.

In order to combine global and local control laws, let us
introduce the local error eL

Ωi
(t) ∈ [0, 1] as:

eL
Ωi

= max
(

0,

∫

Ωi

Φ · σi · (Λ∗ − Λ)
Λ∗

dx

)
.

Compared with (6), this is a more qualitative
error measurement indicating that agent’s vicinity is
satisfactorily covered when it is negative or null. Let us
also introduce a local WL

i (t) and global weight WG
i (t):

WL
i = (eL

Ωi
)β · (1− eL

Ωi
) , (17)

WG
i = 1− (eL

Ωi
)β · (1− eL

Ωi
) , (18)

where β ∈ R+ is a design parameter. Finally, we
compute the motion control law ui(t) as follows:

ui = ki · (WL
i · ûL

i + WG
i · uG

i ) , (19)

where ki ∈ R is the motion gain and represents the
maximum velocity of each robot. The term (1− eL

Ωi
)

in (17) and (18) slows down the agents to develop
coverage in the surroundings when the local error is
high, and speeds up the agent when the error is close
to 0 to leave the area. Note also that the weights
make the agents to obey local control law, when the
local error is high, moving slowly in the direction
of the gradient of the error and performing coverage
thoroughly, and make the agents to obey global control
law when the local error is low, heading towards new
uncovered areas rapidly to increase the performance
of the coverage. This combination of local and global
strategies was firstly presented in [8] where a proof
of total coverage was given for environments without
decay. In this case, reaching the total coverage of the
area is not possible since agents are not able to cover all
the domain simultaneously, but as it will be shown in
the simulations a steady error is eventually reached.

3.2. Selection of global objectives

The motion strategy defined in the previous section
is compounded by local and global components in such
a way that the problem of local minima with gradient
methods is avoided. Note that the computation of the
control actions by the agents is decentralized despite
the usage of global information. The global strategy
requires the assignment of global objectives po

i to each
agent. This strategy is based on blob detection of
the uncovered information as previously introduced in
[6]. We use this processing algorithm to find islands
of uncovered information in the map Λ, and then
we compute their sizes and their centroids. With this
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information we use a similar criterion as in [7] to select
the objective which is based on the uncertainty and the
proximity of the blobs.

Let us define Ψ(t) = {ψ1, ψ2, ..., ψj , ..., ψM} as
the collection of M(t) global objectives, ψj(t) ∈ Dx.
Let us also define πj(t) as the collection of points of
the domain composing each blob and whose global
objective is ψj(t), Π(t) =

⋃M
j=1 πj as the collection of

points of the domain assigned to objectives ψj . Finally,
let us introduce T as the tolerance or percentage of
admissible error, and π∅(t) = {x ∈ Dx|(Λ∗ − Λ) ≤ T ·
Λ∗} as the collection of points that are covered.

The method proposed starts by checking if some of
the M global objectives ψj have been covered. Those
covered are discarded from the list of global objectives
Ψ and the corresponding points πj are released. It also
erases objectives that are closer than a distance R,
which is the coverage radius of the agents. Afterwards,
the domain to obtain the new blobs of the scene is
computed by subtracting the covered points π∅ and the
assigned points Π from the domain to cover Dx. Using
any standard blob detection algorithm of computer
vision the candidate centroids ψf and the points πf of
the F regions of the space to be covered are obtained.
Then, we check if the candidate centroids ψf belong to
the points πf of the blob. If the centroids ψf are inside
the blob, they and the points of the blobs πf are saved,
and the points πf are erased of the blob domain.

From the blob-based set of global objectives
obtained as candidates we need to assign them to
the agents. The procedure presented is similar to the
algorithm introduced in [7], The difference is that in
[7] the assignment only weighted distances to centroids,
whereas now, we propose to weight distances and blob
coverage errors in order to improve performance. Let
us compute the coverage error of the blobs assigned to
each centroid eπj (t) as:

eπj =
∫

πj

Φ · (Λ∗ − Λ)dx . (20)

The choice of the objective po
i for each agent i is done

with a criterion that weights distance to the centroids,
and their coverage error. Notice that, contrary to (1), the
coverage error error in (20) is not quadratic, keeping the
error sign in such a way that the lack of coverage will
increase the attraction weight of the blobs, whereas the
excess of coverage will reduce their weight. Each agent
i obtains for each centroid j a score 0 < S(i,j)(t) ≤ 2
to compose a matrix S of dimension N ×M in the
following way:

S(i,j) =
(

1− ‖pi − ψj‖
max(‖pi − ψj‖)

)
+

eπj

max(eπj )
.

Then, with these scores, the global objectives are
assigned using the following algorithm that matches a
global objective with each agent taking into account the
matrix of scores S. The algorithm is repeated N times,
each time finding the maximum score and pairing the
corresponding objective j with an agent i. After each
match is made, the algorithm reduces the score of all
the centroids for agent i by 2N units to prevent the
assignment of a new centroid to the same agent. Then,
the algorithm also reduces the score of the centroid by
2 units (the maximum possible score) for all agents.
If there are more agents than centroids, the aim is to
produce an even distribution of the agents amongst the
centroids. On the other hand, if there are more centroids
than agents, the algorithm will assign each agent to a
different centroid.

IV. SIMULATION RESULTS

In this section, we present simulation results of
the control strategy proposed. First, let us introduce
some performance metrics: the average absolute error
êDx(t) = √

eDx/
∫

Dx
Φdx, the integral average error

ēDx(t) =
∫ t

0
êDxdt/t, and the integral average power

consumption ᾱ(t) =
∫ t

0

∫
Dx

α dx dt/t. Let us introduce
the coverage function σp

i (r̂) [8]:

σp
i =





σM , if 0 ≤ r̂ ≤ rm

σM · (1 + 2 · r3
p − 3 · r2

p

)
, if rm ≤ r̂ < 1

0 , if r̂ ≥ 1
,

where rp = (r̂ − rm)/(1− rm), r̂ ∈ R+ is r̂ = ‖x−
pi(t)‖/R, being R ∈ R+ the total actuator range, and
rm ∈ [0, 1) the actuator range percentage where the
action is maximum. The maximum action σM ∈ R is
defined to fulfil the requirement of (2) as:

σM =
10

π ·R2 · (3 · r2
m + 4 · rm + 3)

.

This function with plateau shape presents a constant
maximum coverage in r̂ = [0, rm] and decreases from
r̂ = rm to r̂ = 1. With rm ≈ 1 the coverage is uniform
throughout the range, whereas rm ≈ 0 produces a
sharper action. We also introduce a quadratic coverage
function σq

i (r) previously used by other authors [13],
[28], [24], [26]:

σq
i =

{
3

π·R6 · (r2 −R2)2 r ≤ R
0 r > R

, (21)

where r, as commented before, is the Euclidean
distance between a point x and the position of agent
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Fig. 2. Evolution of the coverage map of simulation in Section 4.1.1 with Λ∗ = 50 (green color in the plots). The agents are represented by small
circles and their coverage domain is represented by a dashed circle. The small rhombi represent the global objectives.

pi. Note that the flexibility of the approach presented
allows the use of a great variety of sensors/actuators,
and the user can model different coverage functions
adapted to a particular problems or applications. Let
us also introduce τ = −1/A and g = B · τ as the time
constant and the gain of the dynamic coverage of the
domain. Higher τ means a slower evolution of the
domain and vice versa.

In the simulations, the space length discretization
is 1 unit and the period discretization is 0.1 units of
time. We have computed the integrations over time
using the first order Euler scheme, and integrations over
the domain using the trapezoidal method. The agents
are modelled as vehicles with holonomic kinematics.
In the following simulations we test different values of
the parameters to analyse the behaviour of the control
algorithms. The coverage domain Dx is a 100× 100
units square area with constant coverage priority Φ = 1
∀x ∈ Dx and gain g = 1/2. The team is composed of 6
agents with a saturated coverage power K ∈ [0, 3000],
C = 300/B and with q = 1. The agents move over
Dp = R2 with β = 1/3.

4.1. Variable coverage power

In the following simulations the coverage function
σq

i (21) is used together with ki = 3, R = 10, kR
i = 0.

4.1.1. Variable coverage power with different Λ∗

We first test the coverage performance when using
variable coverage power but constant coverage range.
We present a simulation in detail with Λ∗ = 50 and
τ = 400 and compare the results to the case of Λ∗ =
100. The evolution of the coverage map is shown in
Fig. 2. The evolution of the average action of the agents
(
∫
Ω

αdx/N ), average absolute coverage error (êDx),

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

t

0 200 400 600 800 1000
0

20

40

60

80

100

t

(a)
R
Ω αdx/N (b) êDx

(c) Evolution of Λ, (Λ∗ = 50) (d) Evolution of Λ, (Λ∗ = 100)

Fig. 3. Results of simulations in Section 4.1.1. (a) Evolution of the
average action of the agents. (b) Evolution of the average absolute
error êDx with Λ∗ = 50 (thick red line) and Λ∗ = 100 (thin
blue line). Boxplot of the distribution of the coverage at several
different times with Λ∗ = 50 (c) and Λ∗ = 100 (d).

and a boxplot of the histogram of the coverage evolution
is shown in Fig. 3.

Approximately in 500 seconds, the errors reach
steady values with absolute average errors of êDx(Λ∗ =
50) ≈ 9 and êDx(Λ∗ = 100) ≈ 18. It can be seen that
the power consumption doubles when increasing the
desired coverage level from Λ∗ = 50 to Λ∗ = 100.
Therefore, the algorithm can adapt the power to
the new objective, achieving a similar percentage of
error by doubling the coverage power. The average
coverage power consumptions are ᾱ(Λ∗ = 50) = 638,
and ᾱ(Λ∗ = 100) = 1235. The boxplot chart (Fig. 3)
and the coverage maps (Fig. 2) show that most part
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Fig. 4. Aggregated results of simulation in Section 4.1.2. From left to right, average error over time êDx , integrated average error eDx and average
path length (PL). The coverage objective is Λ∗ = 50 and the resultant average power over time of the proposed variable coverage power control
law is ᾱ = 499.

of the domain is finally around the coverage objective,
although there are also points over and below the
desired coverage level. This is due to the shape of the
coverage action and the coverage decay that prevents
reaching and keeping the coverage objective with zero
error in all the domain simultaneously.

4.1.2. Constant vs variable coverage power

In this simulation, we present a comparison
with Λ∗ = 50 and τ = 200 between our proposal
with variable coverage power and the same without
this feature in order to show the benefits of the
variable coverage power approach with respect the
constant one. We perform 100 simulations starting
at random positions with the same variables as the
previous simulation, and 100 more with each one
of the following values of the coverage power: K =
{100, 300, 500, 700, 900}. In Fig. 4 we show the results.
The evolution of the error with time shows that the
variable coverage is the fastest in reaching the steady
state with a final value of êDx = 8 (Fig. 4 left). In
this case, the only constant power that reaches a lower
value is K = 500, which is a very similar value to the
resultant average coverage ᾱ of our variable coverage,
which is 499. Over K = 500, the error reaches a
minimum and then it grows since the domain becomes
over-covered. By integrating the error over time eDx

(Fig. 4 centre), the variable coverage has the lowest
value. Finally, in Fig. 4 right, it can be seen that the
average path length (PL) with coverage power results in
shorter path lengths. This is due to the term (1− eL

Ωi
) in

(19) which slows down agents when their domains are
uncovered, whereas agents speed up when the domain is
covered or over-covered and then the path length grows.

4.2. Variable coverage power and range

In this section, we study the improvement of
performing the coverage with a variable range actuator.
In the following simulations the desired coverage level
is Λ∗ = 50 and the coverage function σp

i (21) is used
together with following parameters: ki = {1, 3, ..., 9},
rm = 0.8, R ∈ [10, 50], kR

i = 0.1/B2. The following
simulations test different combinations of parameters.
Each result is obtained from mean values of 200
simulations.

4.2.1. Simulation with variable power and range

First, we introduce an experiment in detail showing
the results using our approach with τ = 200, ki = 3,
and range limits R ∈ [5, 15]. In Fig. 5 we show the
evolution of the coverage map. In Fig. 6 we show
the evolution of the coverage power (

∫
Ω

αdx/N ), the
average absolute coverage error (êDx), a boxplot of the
histogram of the evolution of the coverage, and the
evolution of the actuator range of the agents throughout
the simulation. In 400 units of time the steady state is
reached with an error êDx ≈ 8, and average coverage
power consumption ᾱ = 641. As the domain is being
covered the agents adapt their ranges as expected to
the coverage error of the domain. The resultant average
radius R of the agents computed by the control law
during the simulation is 9.99.

4.2.2. Simulation with high decay and sharp action

Here we study the ability of the algorithm to
adapt their position and range in an environment that
varies rapidly (τ = 200) with a sharp action (rm = 0.1).
Results are shown in Fig. 7 with constant range (left
column) and variable range (right column). In the case
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Fig. 5. Evolution of the coverage map of simulation in Section 4.2.1 with Λ∗ = 50 (green color in the plots). The agents are represented by small
circles and their coverage domain is represented by a dashed circle. The small rhombi represent the global objectives.
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Fig. 6. Results of simulations in Section 4.2.1. (a) Evolution of the
average action of the agents. (b) Evolution of the average absolute
error êDx . (c) Boxplot of the distribution of the coverage at
several different times. (d) Sensor range evolution of the agents,
one of them is depicted in thick line.

of variable range, the value of R in the plots denotes
its maximum limit. The integrated average error (eDx),
average power consumption (ᾱ), and average path
length (PL) are represented for different values of R ∈
[10, 50]. In these plots, each line corresponds to a value
of ki ∈ [1, 9]. In general, as resources increase (because
agents move faster by means of a higher ki, or because
they cover further points by means of a higher R),
the error eDx decreases. In the case of constant range,
higher R reduces the error until a minimum is reached
and if the range is increased, error also increases
since the agents become less flexible to cover small
areas or narrow corridors. In the case of the variable

range coverage, as the agents adapt their range to the
conditions of the environment, the higher maximum
radius never decreases the coverage performance. The
behaviour of the average power consumption α is
inverse to the error, so more power consumption leads
to lower error and vice versa. Finally, and as expected,
the path length increases with the maximum speed (ki).

4.2.3. Simulation with high decay and flat action

Here we introduce a simulation with a flat coverage
action (rm = 0.8) and the rest of parameters the same
as in simulation of Section 4.2.2 in order to compare
the behaviour of flat and sharp actions. Results are
shown in Fig. 8. In this case, the differences between the
strategy with constant range and the one with variable
range are also evident. Variable range achieves less
error with lower coverage power consumption. The path
length of the constant range strategy reduces as range
increases since the agents can cover a bigger area with
less motion.

4.2.4. Simulation with slow decay and flat action

In this example we choose the time constant
of the domain (τ = 1000) to have a slow decay of
the coverage information. The results are depicted in
Fig. 9. It can be seen that the error throughout the
simulation span is less variable. Given that the coverage
decay is slow, the coverage level loss of points outside
the agents’ coverage range is also lower, and slower
agents (or with less coverage range) achieve similar
error to others with higher capacity. If we compare
the error with constant and variable range we see an
error reduction with the variable range algorithm. The
average power consumption is also similar or lower.
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Fig. 7. Aggregated results of simulations of Section 4.2.2 with constant
range (left column) and variable range (right column). All plots
share the same legend. Simulation parameters: τ = 200, rm =
0.1, R ∈ [10, 50], and ki ∈ [1, 9]. From first to third row:
integrated average error eDx , average power consumption (ᾱ),
and average path length (PL).

4.2.5. Different desired coverage levels and priorities

The following examples demonstrate the correct
performance and versatility of our proposal in more
demanding environments and different setups. In the
first experiment (Fig. 10) the area to cover Dx is defined
by a map and Dp = R2. There are areas of the map with
different levels of desired coverage Λ∗ = {37.5, 75}
to be performed by N = 4 agents. The parameters
of the problem are defined as ki = 10, β = 1/4, R =
[3, 15], K = [0, 5000], Φ = 1, τ = 800, and g = 1. In
the second experiment, presented in Fig. 11, the area has
to be covered with Λ∗ = 50 by N = 8 agents. However,
there are 17 zones with different values of coverage
priority Φ. Parameters of the problem are ki = 3, β =
1/4, R = [5, 15], K = [0, 3000], τ = 400, and g = 1/2.
The results show that given that the set of agents do
not have enough capacity for completely covering the
environment, the high-priority areas will have better
coverage. In the third experiment, shown in Fig. 12, six
isolated areas are required to be covered with different
desired coverage levels (Λ∗ = {12, 39, 50}) and also
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Fig. 8. Aggregated results of simulations of Section 4.2.3 with constant
range (left column) and variable range (right column). All plots
share the same legend. Simulation parameters: τ = 200, rm =
0.8, R ∈ [10, 50], and ki ∈ [1, 9]. From first to third row:
integrated average error eDx , average power consumption (ᾱ),
and average path length (PL).

different priority levels (Φ = {0.12, 1}). The problem
parameters are set as follows: N = 6 agents, ki = 5,
β = 1/4, R = [3, 10], K = [0, 500], τ = 600, and g =
2/5.

Different simulations with variable coverage
power, with variable range, and with different desired
coverage levels and priorities are presented in the video
attachment, showing the coverage evolution together
with the evolution of the agents’ power and range.

4.3. Discussion on control tuning

The addressed problem of persistent coverage
developed by a team of agents is complex and involves
a great variety of parameters. However, many of them
are related with the intrinsic features of the environment
and setup and therefore they are imposed and not
subject to tuning. In particular, A and B represent
the dynamics of the environment, ki is the maximum
agents’ velocity, while the actuator is modelled with
parameters αi, which depends on σi, C, q, and Ri. The
requirement of the problem is defined with Λ∗ and Φ.
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Fig. 9. Aggregated results of simulations of Section 4.2.4 with constant
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share the same legend. Simulation parameters: τ = 1000, rm =
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and average path length (PL).
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Fig. 10. Results of first experiment in Section 4.2.5. Top-left: Map to
perform coverage. The marked zones denote the two different
levels of desired coverage. Top-right: Coverage error in t =
900. Bottom-left: Evolution of the average action of the agents.
Bottom-right: Evolution of the average absolute error.
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Finally, the parameters that need to be tuned in the
control algorithm are kR

i , kG
i , and β.

Parameter β allows modifying the influence of
global and local coverage control law components.
In general, hybrid strategies with global and local
objectives achieve more efficient coverage, and a good
compromise between global and local components is
1/2 < β < 1/3 . Regarding kG

i , we propose to choose
values close to 1 until the distance from the agent i to
the target is almost the coverage radius Ri, and then
decrease its value (16). This allows the agents to reach
the targets quickly, and then slow down when the target
is being accomplished. Finally, high values of kR

i makes
fast the actuator range variation, allowing maximum
reduction of energy consumption. On the other hand,
low values make slow the actuator response reducing
the energy efficiency. However, note that very high
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values of kR
i may result in a noisy behaviour of the

range evolution, which could not be afforded by the
dynamics of a real actuator.

V. CONCLUSION

In this paper, we have proposed a solution to
the problem of persistent area coverage with variable
coverage power and variable range. We have presented
a formulation and a new control algorithm based on
that formulation. Finally, we evaluate the performance
of our control algorithm and we compare it against
the performance of the coverage with a constant
power coverage actuator. The results show that the
variable coverage controller is able to adapt its action
to different references achieving lower error and less
power consumption. Furthermore, the possibility of
range adaptation allows performance increase when
dealing with uniform sensing functions.
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